IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1-1-1966

Transient temperature distributions in a cylindrical
superheating uel element

Bong Kyu Lee
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
& Part of the Engineering Commons

Recommended Citation

Lee, Bong Kyu, "Transient temperature distributions in a cylindrical superheating fuel element" (1966). Retrospective Theses and
Dissertations. 18490.
https://lib.dr.iastate.edu/rtd /18490

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital

Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/18490?utm_source=lib.dr.iastate.edu%2Frtd%2F18490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

TRANSIENT TEMPERATURE DISTRIBUTIONS
IN A CYLIHDHICAL SUPERHEATING PUEL ELEMENT

by
Bong Xyu Lee
A Thesls Sudbmitted to the
Graduate Faculty in Partial "ulfillment of

The Requirements for the Tegree of
HASTER QF SCITNCE

Hajor Subject: HNuclear Ingineering

Signatures have been redacted for privacy

Jowa State University
Of Science and Technology
Ames, Iowa

1966



i1

TABLZ OF CONTENTS

INTRODUCTION

OBJECTIVE OF INVESTIGATION
REVIE OF LITERATURE

THRORETICAL ANALYSIS

QOMPUTER PROGRAMMING AND RESULTS
DISCUSSION OF RESULTS

SUMMARY AND CONCLUSIONS
RECOMMENDATIONS FOR FURTHER STUDY
ACKNOWLEDGEMENTS

NOMENCLATURE

LITERATURE CITED

"R E N N PPN |



INTRODUCTION

In bolling water reactors the temperature of the steam
12 limited as aleo is the thermodynamic efficiency. The
steam produced is saturated and thls requires the use of
more expensive superheating equipment externally than for
superheated steam internally. One approach to iamproving the
efficiency 1e to use the reamctor itself as a superheater,

For boliling water reactors, the nuclear superheater,
consisting of bolling rezion and superheating reglion, may be
elther of the "integral” type or “"geparate" type. The ine
tegral type nuclear superheater produces steam in the same
reactor and the separate type utilizes steam from another
reactor, The boiling region can be elther in the center or
at the periphery of the core, with superheating at the pee
riphery or center, respectively.

From reactor safety and ecomonic standpoints, a study of
the fuel elements in nuclear superheating power reactors,
which are usually operating at high temperatures, has been
inereasingly important, since the fuel element is the central
and significant component in the power reactor systems and
the zreat amount of power from the nuclear power reactor is
demanded, Therefore, a precise knowledge of possible teme
perature dlstributions is required by those who design various

parts of nuclear reactors,



' Figure‘i. A typlcal double-=annular fuel element of nuclear superheatér
: “{integral type) ;



Analytical methods are avallable for predicting temperature
distributions in reactor fuel elements, One way of predicte
ing the transient temperature distributions in the fuel elee
ment 18 by mathematioal analysis, 7his generally requires an
integral solution of a certain form of the general equation for
heat conduction in an isotropic solid, i.e,, (see Nomenclature)

0(*07:’91')?(!:!"0’1’);{ - %(!'inzo'm'}% + ;%’k(!:’o'o'“;;

+ %k(!g’;‘g'?);;% + q(xyyy2,t)

Temperature, 7, is a function of space as well as time,

The solution and its application to transient tempera=
ture problems in nuclear superheaters is complicated by the
fact that when the reactivity is perturbed, or iz many
cases, 1z decaying, the heat generation rate in the fuel elee
ments is a function of time as well as a function of posie
tion. Furthermore, the boundary conductance may also change
markedly with time,

Considering the many difficulties, the utilization of
the technique in this work has been restricted to problems
involving a certain zeometry., Of the various geometrical
shapes in which fuel elements can be fabricated, the solid
eylinder 18 one of the most common, The eylindrical fuel
elements in most reactors are relatively long with regpect
to their radii and it is supposed that the thermal neutron
flux distribution ig axially symmetric with the fuel eolement,

In order to simplify the work, while remaining suffie
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clently general to be applicable, with a minimum of idealle
gations, to the problems of transient heat conduction in long
solid oylindriocal reactor fuel elements, the heat generating
element 13 assumsd to be a s0lid cylinder of infinite longle
tudinal extent, It is also assumed to have axially symmetriec
temperature and heategeneration.rate distridbutions, The cone
ducting medium is also assumed to be isotropic and homo-

geneous,



OBJECTIVE OF INVESTIGATION

The objective of this research is: 1) To examine the
transient temperature distribution and heatetransmission-rate
distribution in the superheating region in a long solid cyline
drical fuel element., The transient temperatures and heat
transmission rate are functions of time and radial position.
2) To develop methods of application of the solution to ree
actor heat transfer problems which inveolve variable boundary
conditions.
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REVIEW OF LITERATURE

Several modes of attacking the problems of transient
temperature distributions in nuclear reactors has been exe
amined for particular ocases to obtain engineering solutions.

Carslaw and Jaeger (1), and Schnelder (2) have conducted |
the most extensive work on the temperature distributions in
various geometries and with various boundary conditions.

Ma (3, 4, 5) has examined the stability of cylindrical
reactor fuel elements and presented transient temperatures
distributions in oylindrical fuel elements,

Loretan (6) has solved the transient multie-dimensional
temperature distributions, which is quite general and applies
to any geometry, by using a Laplacesvariational method,

Tippets (7) estimated the transient temperature dise
tridbutions in a nuclear fuel element by assuming that bounde
ary conductance and coolant temperature are constant or ine
itially varied,

Snedden (8) has employed the "Nini series assoclated with
a function f(r)" to define the "finite Hankel transform" pare
tioularly for use in solvinsg the equation of heat conduction
for an infinite solid oylinder, and has outlined (9) a method
for solving the transient temperature distribution in an ine
finite solid oylinder having axially symmetric, time dependent
sources of heat,

Kaplan (10) and Hildebrand (11) have presented some
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techniques for solving the somewhat complicated differential
and intezral equations which appear in the theorestiocal
analysis of heat transfer problems such as the one considered

in this research.



THEORETICAL ANALYSIS

A general form of the differential equation for heat
conduction in solids can be written as

2
53 k(xe 7y 2 T"'I + —' k(xy 7y 2, T)'z * == = %(xy ¥y *oﬂ-‘;g

+ q(xy 7y 25, t) = o(xy ¥y 2y T)P(xy ¥y 3)‘:‘% (1)

In the general case the properties k, ¢ and ¢ are functions
of the space coordinates and of the temperature, and g, a
volumetric heat source, may also be a function of time, Sinece
this is a differential equation, any solution gives rise to
arbl trary functions which have to be evaluated in terms of

the boundary conditions., However, if k, ¢, and p can be taken
as constant, the use of a Laplacian operator makes a cone
slderable simplification possible

0(":-@ = 7e(RUT) + q(xy ¥y 24 t) (2a)

The fuel element is agsumed to be a long solid cylinder
having 1) an initially steady state temperature distribution,
2) axial symmetry of temperature and heat generation, 3) cone
gtant properties, coolant temperature and boundary oconductance
and 4) a heat generation rate which varies radially according
to the thermal neutron diffusion theory and which is an ar-
bitrary funotion of time,

If the material of the element is isotropic and homogen
eous and ite lonzitudinal heat conduction is negligible, the

equation of heat conduction can e expressed as
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2 .
0t2% = kiz—g + 2 2) + a(ryt) (2v)
r
By dividing squation 2b by the product ¢, defining a = -oj!‘;.

and assuming that q(r,t) can be written as

a(ryt) = q, m(r) a(t) (3)
where q, is the initial steady state heat generation rate
per unit volume in the fuel element, m(r) and n(t) are funce
tions of radius alone and time alone, respectively, the final
equation of heat conduction, which will be used as the basic

equation, can be expressed as
2
A ? of
H=aGF + 13D+ 32 nimnee) ()
The boundary condition assumed on equation 4 will be

;:.s-e, r= 0 (5)

Hewton's law of cooling (1) gives another boundary condition

in the fom

g#h?'@; Tr=a (6.)
where n-ga-o {6b)

fquations 5 and 6a are boundary oconditions whioch will be
used to solve the basic esquation &4,

As a preparatory step, the finite Hankel transform and
its important property will be evaluated in order to solve
the baslc equation. Tgquation 4 can be integrated, after
Sneddon (9), by using the finite Hankel transformation of
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zero order for the oylindrical region (0,a), 1e2¢y 0 85 T 5 2.
The finite Hankel transformation of zero order of f(r) is
defined by the linear functional operator

e -

1 le(r)} 8. " wtix) 307 arB L), 05 TS (7)
which 12 valid for all f{r) integrable in the interval
0g rg as. T™e get of parameters )‘ can be chosen in more
than one way, the cholce being determined by the form of the
inversion theorem used, If the parameters L‘ are roots of
the equation,

JQ'(&‘) + MO(AI‘) =0, mm= 1!2!3{000 (8a)

or in another fomm,
hJe(l-.) - l-\’x(x‘.) = 0, me= 1, 2, 3, eee (8b)

then a corresponding inversion formula may be used to express
f(r) in terms of the set of functions ; (x.)s

T, J. (A7)
f(r) = -’l,--?-?— (9)

- h™ + I (Ap8)
where It (A a) = « A Js(A a)
the sumation extending over all positive roots of equation
8b.

In order to derive the required porperty of the trange
formation 3,. the notation ™ = 47/Ar end T* = A°T/4r° is
adopted, Theé following is the zequence of integretion by
parts in the region (0,a), 2*®*r» 0 S r < &
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f a .2 1
(Y ’(ﬁ od r‘g’ JolAgr) dr
& 2 EY
-fo i, (A7) t‘-j o ‘J; ﬁ I (Agr) ar
a a
= T (A7) ]y -fo T'{-&rl’u.rn - J‘u‘r)} dr
= :T'(u):o(x.n) -f; -r'x,.r.r"(x‘r) ar
= aT(a)J (A 8) - [x.:m,'(x,r)‘s;
a
g k'[) MWy " (Ag?) + Jp0 (A7) dar
= l’f‘(l)d”(l-l) - :L.T(u)Jo'(x-n)
»
+ zfo vl 3" (AT + \1‘3 It gT) + T (A r)ar
e, J; g r1J, (A r)er (10)

An application of equations 5, 6a, Bb and the first solution
of Bessel's equation, l.e.,
J"()._r) ¢ ghe J’,'(L.r) + J.(x.r} = 0 (11)
to equation 10 gives the reduced form of the equation 10
[ s s d ) 5 (ar) ar = ’f‘m ) ar (12a)
0o s o'Ap®! Ar "’*no ol a™ (12

If one compares equation 7, the definition of the finlte
Hankel transform, to equation 1(2a, the latter can have another

form,



i2

Mgt am

whioch is a very important property to be used in performing
the integration of the basic equation &,

The definition of the finite Hankel transform, squation
7+ 18 used to transform the equation 4 by first sultiplying
rJo(x.r) on both sides and then integrating the result dee
tween r = 0 and r = a2 in ordor to obtain the form,

f =% ri (A rlar - i r(-:} 22D s (A r)ar

6 n(t) fo m(r)J, (A rlar (13)

If T is continuous, has & continuous derivative ;-E
in a domain of the rt plane, and has a value which depends
on the choice of t, "Leibnitz's rle”, as stated by Xaplan
(10), may be applied and the first integral of equation 13
can be expresgsed as

f 5% w(\rler = -3-5[ 1y (Agr)ar (18)

Bquation 14, equation 7, which iz the definition of the
finite Hankel transform, and equation 12b, which is its proe
perty are used to reduce the equation 13 in the form of the
oerdinary linear homogenecus sequation

ﬂ + u‘z;' = ¢ ;(r)n(e) (15)

where
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- L]
Te) " e, (rer (16)

- "
ana a(r) =f © m(r)i (giar (17)

Integration of equation 15 with respect to t between
t = ”1—1 and t = ti glves
—ah, 2ty = ty_q)
‘r(r.t ) = '1‘(1\.!.:1 1) ®
- -»cu.zti / tl. ak.zt

T n(r) e E nl(t) ) dt (18a)

where the subseript i in nt(t) indicates its correspondence
to the time inorement, By letting A‘t w“ tt - tl.-i' equation
18a m be mem as _m‘ “1
T(!"tt) - T(l‘.tt 1) L]
2t k.zt

- -l tl a
+ 3¢ ni(r) e ];1 . nt(c) e dt (18p)

Substitution of equation 18b into the inversion formula,

equation 9, gives the boundary value solution of equation 4
2

} J( r) aty

nﬂt(h * A, )J’ (Aya)

m.at

+ k n(r) o n*(t) " z!e]. h>0 (19:)

- -ax. t
2 iy

%11
or, by applying equation 8b, gives
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E -a Zat

. ) ;(r) o.n‘zﬁft‘ n,(t) ou'zt dc]. h >0 (19b)
*1a1

The boundary value solution of equation 4 given by
equation 19b is used to develop particular solutions for cere
tain transient heat transfer problems, which are common to
nuclear engineering,

The solution which will be developed iz applicable to
long s0lid oylindrical fuel elements having uniform tempera-
tureeindependent material properties, axial symmetry of
heat conduction and generation, and being placed in a uniform
thermal neutron flux field, It is assumed that the heat gene
eration varies with both time and radial position and the
boundary conductance is greater than zero, 1.0., h > 0,

It is convenlent to consider an infinite solid oyline
drical fuel element cooled by the transmission of heat from
its surface across a thermal resistance to a unifom coolant,
It 18 also convenient to assume that the radial distridution
of the thermal neutron flux in the fuel element is in accord
with that predicted for a single element by the slementary
thermal neutron Aiffusion theory given by Classtone and
Edlund (12),

Thermal diffusion equation for the fuel slement 1s given
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by

Vg - B8 = O (20m)
where § is thermal neutron flux at any point in the fuel
element, and D and L, are corresponding diffusion coeffie-
clent and macroscoplc absorption oross section, respectivee
i1ys There is no thermal neutron source term in equation 20a,
sinoce 1t 15 assumed that there is no slowing down in the
fuel element. Fguation 20a is developed in the form,

Vi e w0 (20b)
where ka = % and » 1e the inverse of the thermal Aiffusion
lenzth, assumed to be uniformly constant,

In eylindrical ccordinates, equation 20b can be exprese

sed as "
; 2
* 1 - K w = 0 (208)
ir.48
Since ua is positive, equation 20¢ is equivalent to s modie

fied Bessel equation and a general solution is of the form,
B = AT (xr) + MK (xr) (21)

where I snd K, are gero order modified Bessel functions of
the first and second kinds, respeotively., The seocond term
of equation 21 requires that the neutron flux become infinite
at the axis of the fuel element, where r = 03 therefore, Ay
must de zZero, Thus, thermal neutron flux distribution in a
single infinite solid eylindrical fuel slement will be

#= Al (xx) (22)
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Aosording to the elementary thermal neutron diffusion theory,
equation 22 represents the radial distridution of themal
neutron flux in an iafinite solid eylindrical fuel element
with conditions of axially symmetrioc incldence of thermel
neutron flux on the boundaries of the slement,

Relationships for the gteady state temperature distrie
bution and radial dlstribution of heat generation rate per
unit volume in an infinite solid oylindricsl fuel element
%ill de derived by using equation 22,

As & good spproximation, Glasstone and Sesonske (13)
state that the heat generation rate per unit volume at 2 point
in the fuel element is linearly proportional to the themmal
neutron flux at that point, Thus, the heat gemeration rate
per unit volume at any point, r, ir an infinite sclid cylinder
may be expressed as

q(r) = BI (vr) (23)
where B is a constant of proportionality,

Under steady state conditions, 1.esy 5f = O and n(t) = 1,
the equation of heat conduction, equation 4, can be exprese

Lgeige-yn

=« £ I (xr) (24a)

dultiplication of equation 24a Dy r 4r and integration yields

riE e e rLxr) 4 C (26b)
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where C ig the constant of integration, ihen r = 0, C = 0,
Thus, equation 24% becomes
rgE e e r), r=0 (28e)
Multiplication of equation 24c by dr/r and integration be-
tween r =y, T= Tand = a, T = T(a) glves

(r) = Ta) + -kl;![I‘(u 8) = I (xx)] (244)

Under steady stats conditions, the total hesat transfer
rate per unit length across the surface of the element, Qg
is given by the heat balance, using equation 23

Q" 2RBJ;. rI.(ur) dr

= 28 a1, (va) (25)

fauation 25 solved for B ylelds
» Q

B = mﬁ“—a (26)

Substitution of equation 26 into equation 244 glves the
gteady state temperature distribution

X£e0) = Tay0) ¢ B (1, (ca) = I(xr)]  (27)
2‘&‘)(!1(“1)

By putting equation 26 into equation 23 results in the steady
state radial distribution of heat generation rate per unit

voluse
q‘r’o, - ——&—H—- I (Hr, (23)
2wal



18

It hag been tacitly assume? that the ocondition of axial
symmetry of thermal neutron flux and the maznitude of X does
not change with time under ths transient condltions. lenoce,
the heat generation rate per unit volume may be expressed for
the transient case as

qlret) = . - I, (xx)*n(t) (29)

zmxl(u a)

where n(t) 12 a function of time alone, Sguation 29 can de
used in case of heat generation rate dependent on the radius
of the fuel material,

If the heat generation rate per unit volume in an ine
finite solid cylinder is assumed to De constant with respect
to position, its steady state magnitude can be expressed by
the thermal energy balance as

q'~5’; (30)

na

where Q, 15 the steady state heat transfer rate per ualt

length scross the boundary of the fuel material. For the

transient condition, if the temm expressed as equation 3
q = qu(r) a(s)

is adopted, a comparison with squation 30 gives

n(r) =1 (31)
a9, --3; (32)

and n(t) = 1, at t = 0 (33)
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By using equation 30, the equation of heat oconduction
for the steady state, equation 24a can be expressed as

. ]
%ﬁ-,—.c:ﬁ%x--ﬁ, (38)

A performance of successive integration of equation 34 using
the boundary condition a(ﬁ)‘ " - ;% from a consideration of
the steady state enerzy balance over the fuel material, ree
sults in the steady state temperature distridbution

2
Tr,0) = ag0) + 3l (1 - ) (35)

fquation 35 can be used when the heat generamtion rate is
independent of radius of the fuel element,

It 1s shown that the steady state temperature distri.
bution and radial distridbution of heat generation in the
fuel material are equations 27 and 28, which will now be
used to develop equation 19b,

The temperature, T(a,0), in equation 27, is measured
above any arbitrary coolant temperature, In general, if the
coolant is maintained at a temperature Tos then by Newton's

T(a,0) = Te * !:%B

3

= T, * Trakh (36)

If the form q = q, n({r) n(t) can be adopted, it is seen

law of cooling

from equation 29 that
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".% (37)

and n(r) = I (xr) (38)

By the definition of equation 7

- a
n(r) -L rI,(nr)J.u‘r) ar

a
= :r:? (xIg(xa)I (A m)

+ AT, (xa)dy (age)) (398)
Use of equation 37, the definition, ¢ = {fg-. and multiplication
of equation 39a by a result in

o K o
;& L ‘(r’ = ———&T—vs -
f 2okl (va)( g + A7)
¢ kI (va)d (Am) + A T (xa)Jg(A m)]  (39B)

Finally, by applying equation 8b and collecting temms,
equation 391 beoomes

8. e - Ly |2 Sl -

2rike(n + A7)

Equation 27 can be transformed to obtain, after reare
rangement,

ry0) = :Jlgl:i{mm . ol [;1%3
'?h:—;z'(é'v%)]} (%0)
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For the time interval, 0 § ¢ £ t,, equation 19d can be
expressed in the form

2
o -, %
J (A r)e -
Ty(rety) = -f, = ML | Ttrg0) o
1+ 3 o

2
® t
+ 2 :(r)g“ n, (%) o?*' dt& (81)

e
Substi tution of equations 39¢ and 40 into equation 41 results
in -uxll
(A r)e 2

Tylrety) = -& i j-h-r——-——- {Ti(‘o” +

e m=l
(1+ -})*_:,u_u

I (xa) (u)
e e 5 *

* (1= luzj;tt ny(t) .ll.. . Gt)]}.

0srsa, 0<h<w (42)

Equation 42 is applicable to probleme in which a steady
state temperature distridution exists at ¢t < 0 and in which
it may be assumed that, at t = 0, the boundary conductansce,
which is expressed by U = khy, and the coolant temperature
change instantaneously to new constant values.

If the boundary conductence and the coolant temperature
are uniformly constant from ¢t = 0 to t = tye an alternate
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form of equation 42 may be obtalned by specifying the coolant
temperature to be zero, By substituting equation 36 inte

equation 42 snd colleocting terms, a form convenient for come
putation is obtained

K K I (xa) o J (A7)
ytevty) = S8 G+ vy 2, i ¢

2
L W - t
. ! N -M (. x‘ 1 + ajo- 1%(':)0

2
o), (t,=t)
* e 7 aty, o0<n (43)

It is worthwhile to note that in eguation 43, as ty

beconmes large, the first term inside the brmckets approaches
zero and becomes negligible,

When evaluation isg to be made at the surface r = a,
equation 43 can be simplified by using the relation

To (A8 s(agm) « A ]= %n m= 12,3500

which ylelds

2
o | - t
Ti(r'gi) = A z -————4&—22-——- (‘ “& 1 +
-4 $. ol
(1 + %,—m *00)
2
t - -t
+a z[) 1 nit) * e “%a “1 ’dt], 0<h (44)
where
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x

Q (na)
Ao (g 'f'T»TTT' k>0 (45a)
PO x=0 (450)
niea
m( r)-r:-!i?-r-)-,' r<a (b6a)
Age e
MAger) = 1‘,-. rea (46b)

and A, 1s defined by equation Ba.
In mumerical evaluation, it is often convenient to en~
ploy & dimensionless ratio,
Ry(rety) = W (47)
o o
vhere T, is the average coolant tamperature.
By Newton'e law of cooling, en evaluation of R at the
surface directly gives the ratio of the heat transfer from
the element at t = ¢, to the steady state rate at time zero,
The limitation of eguation b4, ag » approsches zero, is
fdentical with the cese of a heat generation ratioc independent
of radius, By the elementary themal neutren diffusion theory,
after Classtone and Edlund (12), * is the inverse thermal
diffusion length, T™hus, R ig inversely proportional to the
square 100t of the mean square distance that a statistically
average thermal neutron would travel from the point it just
becomes thermal to the point of capture,
The case of constant boundary conductance and variable
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coolant temperature will now be evaluated,

Purely mathematical solutions of sufficlent generality
to probleme involving & variable coolant temperature, in ade
dition to & radius snd time dependent heat generation rate,
are extremely difficult to obtain., In order to provide a
method of attack on those problems, an adaptation of the
solution to the basic equation 4, appropriate for use in a
step-wise method of calculation, will be developed,

In the development 1t will be sassumed as an approxie
mation that the coolant temperature undergoes an instantane-
ous change at each time division t,, but the coolant temper-
ature is conatant throughout each time increment M:1 = tt"‘tai'
The difference between the coolant temperature for an inore-
ment At, and the steady state ccolant temperature isc,.
Henoe,

'K‘llr.t’) - Tt-l‘r'e’) - e‘ - 61‘1 (“)

where subsoript 1 indlcates thet T is referred to the coolant
temperature existing during the ith time inecrement,
Substitution of equation 8b for le(ka) into the equae
tion 19b ylelds the following fom ”
gl t
2, An Tiat

3 = | r) e
Tiug(Toty ) = E h‘!"“i'!

a 1 (" + Ay ) Joz(x‘a)

[ Tyat(Tety p)*

2 2
-, - t t
¢ @0 *a Fiez - Y n(r)ft,:: ni_!(t)on. dtj

(49)
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The subsoript (1-1) of T, ,(ret, ,) and T, . (ry¢, ) in
equation 49 indiocates that they refer to the coolant temperw
atures corresponding te the (i-1)'th time increment,
By equation 48
Tl""‘t-i’ - (el - 61.1) +* Th»l"'tlwl) (50)

Hense, the finite Hankel transform T,‘(r.t‘_l) iz
Ty(metyog) ® doleg = Squq) * Tyog(Potyyy) (s1)

or, by the following fom,
8
dolcy = €4uq) = (g = ex-x’f; g (Agriar
" hley =g gy age) (52)

Tylraty ) = fhiey = €4 gDy 0g8) + Ty g(mety ) (59)

A comparison of the form of equation 49 with the invere
sion formula, equation 9, shows that

2 2
- -y t o t
"”l(r‘ti-l) L) -1 {Ti-!(r'tt-i’ cu' 1=2 -
2
- t ¢4 t
* o n(r)f' -1 ny_q(%) o *n au} (58)
1e2

Thus, substitution of equation 54 into equation 51 results

2

Ty(ratyy) = I 08N (Ey = €y y) v *Teq (ot )

2 2
- t - t «a t
teo ™ *‘1%}, m(r) "‘n,.,(t)-*' at  (55)
2
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Letting the index { in equation 55 take on the wvalues 1, 2,

Js eee generates s sequence of transformation equations core

regponding to the successive time incremente Atl. Btoy Atj.
ses Zquation 56a is obtained direotly from equation 53

;ierO’ = ;;(r.O) + t Ji‘l...’. E: (’6‘)
and from equation 55
-arg ety
1(:.@,) B t Ji(x.n)(e - e‘) +e * 7y(ry0)
2
+ a '-;e- n(r) ni(t)e at {56b)
0
"""- “Q -
T,(r.tg) - t Jy(aga)(eqg = €p) + @ * Tp(rety)
2
‘ﬂk. ta “ tz ﬂ“ t
+ e -;hé n(x‘)f"1 ny(t) e dt {56¢)
% —oay 0ty
Ty(Tety) = t Jy(agal(ey = €5) + @ ¢ Ty(rety)

2 . 2
-Q\" 14 l. t
+ e 3' u(r)f 3 (t) S at (564)

etc.

By specifinge s” t:° = 0 and substituting each equation in

the sequence into the one immediately following, it results,

after collection of terms, in the following transformation
equation relating T, (rot,_,) to T,(r,0),



2 2
- ~tdy %1 p-z-t . ) o,
TPty q) = o | Wit = Fen ey
2
-~ - t=iel ﬂ\- t }
- 'r'(r.o) v T n(r)fho n, _qve dt (57)

However, by assuming that the initial coolant temperae
ture for t < 0 is zero and that the boundary conductance ex-
pressed by U= kh i¢ unifomly constant, substitution of
equations 36, 396, 50 and 57 into equation 19b results,
after rearrangement and collection of terms, in

M(A_ sT) .% t’.

T, (rety) = A Z_l -};(u .\ )
m
(1 + %)(Nz - x-'
2
et oWy (4ot —ory (ty=t)
?Z'.o (€peqg =€7) @ +a f ny(t)e at,
0<h (58)

The quantities A, n(l‘.r) and A, have been previously defined
by equations 45a and 45b, b6a and 46b, and 8a respectively.
The subsoeript i appended to T( r.t,.) indicates that T iz meas-
ured above the coolant temperature existing during the time
increment “1 = 21 - tl—l'

Equation 58 is applicable, for step-wise computation,
to problems for which the boundary sonductance remains cone
stant and the coolant temperature varies arbitrary from a
zero steady state value at tine ¢ = 0,
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For the case at“mtom heat generation, 1.0., = 0,
equation 53 simplifies as does equation Li,

The heat transfer rate from the surface of a fuel ele-
ment is radially evaluated ﬂ.ﬁ equation 58 by employing
HNewton's law of oooling. Therefore,

ate) = 2mauU [(ayt) = 7]

= 2maUT(a,t)y T, = 0 (59)
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COMPUTER PROGRAMMING AND RESULTS

In order to apply the derived equations in predicting
temperature distributions in a superheating region of the
long solid erlindrioal fuel element in nuclear power reactors
during the transient state after a sudden power reduction,
equation 58 has been programmed on an IBN«360 digital come
puter,

The form of equation 58 in the program is

2

-l t
) M(A_sT)e &' 1
Ty(rety) = A =

n=1 .
(1+ -‘-:,-uf - aH
2

2
puiei -il t t=i a t
. Eo (€ppg = €ple *a *» v 2fM ny(t)e u dt],0<h,

where K I (ka)
$= o e i)

J (A7)
H(‘-'r) ax —Jﬁ—- .
AnTy(3g®)

fr+ 20200 e

Given Nata

SNatural uranium was chosen as the fuel material and
saturated steam was chosen as the coolant, Naterial propere
tles were evaluated at 100° ¢, 200° ¢, 300° ¢, 400° ¢ and
600° C, which were assumed as mean temperatures of the fuel
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material within time intervals, 30sec-50sec, 17sec=30sec,
9seo~178ec, 3sec-9sec, and Ogeow3sec, respectively, Fhysie
cal properties of the fusl element and the coolant were
assumed as follows: the radius of the fuel element, a = 0,500
inch in one case and a = 0,336 inch An snother casej h =
3.268013 l.n"!: mean snergy released per flgglon, ¢, and stae
tistical mean neutron flux, ¢, are 200 Mev/flission and
1 x 10t® nmtrom/az sec, respectively.

The quantity, n(t)”, is siven by a function by which the

heat generation rate varies with time,
I
)

‘a(t) = 1« (0.251t7 = 0,219t v 0t

n(t) = 0,2369/(t = 0.9305)%¢392 s 15t<3

a(t) = 0.2805/(t = 0,3250) %3685 » 3 €t <1000
where t is expreassed in seconde,

Values of €peg = €p? expressed in equation 50 at dife

ferent assumedeaverage temperatures of the fuel element, are
taken as in Table 1,

Other properties (16), taking mean values, are aleo
tabulated in Table 1,

Caleulated Tata and Results

The total heat transmission rate per unit length, Qe
and macrosoopie fission cross section, 1:,. were caloulated
at different temperatures, after Benedict and Plgford (14)

W

" e selected equations were obtained by M, B Larson,
Oregon State University, Corvallis, Oregon.
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and FleWakil (15), and tabulated in Table 1 in both cases of
a = 0,500 inch and a = 0,336 inoh,

The distance from the central line of the fuel element,
ry was chogen as r/a = 0, r/a = 1/4, v/a = 1/2, v/a = /4, and
v/a = 1 in case of a » 0,500 inch and r/a = 0, r/a = 1/5,

r/a = 2/5, v/a = /5, v/a = 4/5, and r/a = 1 in case of & =
0.336 inch,

Equation 8b was programmed on the somputer, The values
of ), were calculated from the computer results and tabulated
in Table 2, The function n(t) on which the heat generation
rate depends as a function of time was aleo caloculated by the
computer, The values of n(t) at each time unit has been tabe
ulated in Table 3, 2

The integral j bl'tu(v:.) e“' ;
computer by using s::e trapezoidal rule, after Hildebrand (11).

By using the given and caloulated data, temperature dis-
tridbutions in a superheating region of the long solid cyline
drical fuel element and the heat transmission rate from the
surfase of the fuel material were determined end sre tabulated
in Table 4 through Table 7., They are also plotted in Figure
3 through Flgure 7 with various temperature structures at
both cases of a = 0,500 inech and a = 0,336 inch and then the
results are compared with each other,

dt was programmed on the



Table 1. The properties of fuel material used
g(’c} su;z;m) (1n™") x(s3tu/nr* z,(c-"i) e’ﬂ-ep(%) roam:-'ft)
O' Cumion
££°7r) 1 a=0,50 in a=0,.336 in
100 0.01757  1.958 16,20 0.150 15 2.276°10° 1,023°10°
200 0.01755  1.781 17.42 0,136 15 2.065°10° 0.933°10°
300 0.,01753  1.67% 18,14 0.128 16 1.872°10° 0.845°10°
400 0.01751  1.65% 18,82 0.11% 13 1.747°10° 0.787°10°
600 0.01598  1.552 20,00 0,100 27 1.519°10% 0.685°10°
Table 2. The walues of Ay With m = 1, 2, 3, &, 5
-1
£t
e (inch) ‘\l( :
A Ay Ay Ag
0.500 36,00 101.25 173.60 248,00 322,50
0.336 46,60 146,60 256,80

*First trials show that "m behind m = 3 can be neglected.
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Table 3. The function of n(t)

T™me (sec) Punction n(t)
0,00 1.00000
0.20 0.99764
0.40 0.,97833
0.60 0491740
0,80 078179
1,00 0453001
1.50 0.28081
2,00 0.23214
2,50 020675
3.00 0,19519
500 0.15890
7400 0.13936
9.00 0412653

11,00 0.11721
13,00 0.11003
15.00 , 0.,1042%
17.00 0.09944
19.00 0,09538
21,00 0.,09187
23,00 0.,08880
25,00 0,08607
30,00 0,08041
35400 0.07593
40,00 0.07225%
45,00 0.06916

50,00 0.,06651




Table &, Transient temperature distridbutions as 2 function of time ag well as
radial position {(material properties svaluated at 400° )
2la=0 xlfe=1/b  xla=1/2 xlfe=3/4  z/za=1

t T 'r/x' o3 /T o YT o2 on o r/,.
1(see) (°r) (°#) > P B 5 (°r

0.0 1786 1.000 1737 1.000 1596 1,000 1355 1,000 1006 1,000
0.2 1768 0,990 1719 0.990 1578 0,939 1337 0.987 950 0.985
O.b 1768 0,990 1719 0,990 1578 0,939 1337 0.987 990 0,985
0.5 1767 0.959 1719 0,939 1578 0,989 1336 0,986 990 0.95%
0.8 1762 0,987 1713 0.987 1572 9.9“35 1331 0,982 984 0,978
1.0 1743 0,979 1700 0.379 1558 0,976 1316 0.971 971 0.965
1.5 1686 0,948 1677 0.943 14598 0,936 1252 0.924 919 0,914
2.0 1éoz 0.900 1558 0,397 1415 0,887 1180 0.871 833 0.858
2.5 1 0,254 1576 0.8%50 1337 0.838 1111 0,820 811 0,807
3.0 1 0.808 1396 0,804 1262 0.791 1046 0,772 Og 04759
5.0 1185 0,681 1104 0,636 996 0.62% 825 0,609 s 0.604
7.0 908 n.gg 876 0.505 791 0,496 656 0,485 4884 0.481
9.0 728 9O, 202 0. 323 éaz 0.398 8 0.390 390 0,388
11.0 591 0,33 570 Q. 15 0.324% 30 0.317 319 0.317
13.0 488 0.273 470 0,271 & 0,267 356 0,263 265 04,263
15.0 509 0.229 Wb 0,227 358 0.22% 299 0.221 223 0,222
17.0 I8 0,195 336 0,193 306 0,191 256 0.189 192 0.191
19.0 302 0,159 291 0,168 266 0,166 ,g 0.165 168 0,167
21,0 267 0,149 257 0.148 295 0,147 1 O.146 159 0,148
23,0 299 0.1 231 0,193 211 0.132 178 0.131 135 0,139
25,0 218 0.1 210 0.121 192 0.120 162 0.120 123 0.123
30.0 177 0,099 165 o.gy 1 0.099 150 0,103 114 0,113
5.0 1 0.088 150 0,088 151 0,088 125 0,092 102 0,101
0 1 0,081 gz 0.079 129 0,781 115 0,085 9% 0,094
45,0 135 0,075 0,075 121 0,076 1 0.079 89 0,088
50,0 128 0,072 122 0,070 115 5.072 102 0.076 8% 0,084




Table S5, Transient temperature distribution as a function of time asg well as
radial position (material properties evaluated at 600° C)

d. = 0 5(. = !‘i us = !‘2 z& = :‘2 da = 1

t T bV Ay T /T T /T T T -
1( ses) (®r) * (°p) o o R . (;?) .
0.0 1510 1.000 1567 1,000 13%9 1,000 1156 1,000 853 1.000
0.2 1483 0,982 1552 0,983 1323 0,981 1120 0,977 829 0.972
Dl 1483 0,982 1552 0,983 1323 0,981 1120 0.977 829 0,972
0.6 14383 0,982 1442 0,982 1322 0,980 1120 0,977 828 0,971
0.8 1879 0.979 1438 0,980 1318 0.977 1115 0.973 825 0,967
1,0 1868 0,973 1528 0,973 1293 0.970 1105 0,964 815 0.955
1.5 1521 0,941 1380 0,950 1259 0.93% 10 0.921 775 04,909
2,0 1361 0,901 1320 0,899 1159 0,889 1000 0.873 732 0.858
2.5 1298 0,899 1257 0,857 1139 0.84% 946 0,826 691 0.811
3.0 1234 0,818 1195 0,814 1081 0,801 896 0,782 658 0,767
5,0 1000 0,662 965 0,658 870 0,64% 721 0.629 zgg 0.621
7.0 808 0,525 780 0,532 704 0,522 2?3 0e 509 0.503
9.0 6 0.5%3%6 635 0.433 E;b 0.482% 6 0,415 350 0.5%11
11,0 1 0,358 2 0,356 2 0,350 92 0,342 289 0,33
13.0 50 0,298 I 0.256 391 0.291 327 0.285 242 0,28%
15.0 379 0,251 366 0,249 gg% 0,246 276 0.281 205 0.281
17.0 25 0,218 312 0,21 0,210 237 0.207 176 0,207
19.0 281 0,186 271 0,1 246 0.182 206 0.130 1546 0,180
21.0 257 0,163 298 0,162 217 0.161 182 o.xzz 136 0.160
23,0 220 0,146 212 0.145 196 0,184 163 0,1 122 0.143
25,0 199 0.132 192 0,131 ng 0.1730 1 0.129 111 0.130
30,0 1 0,105 152 0,108 1 0.105 123 0,108 99 0,116
3540 1 0.091 132 0,090 123 0,092 1 0.094 87 0.102
40,0 125 0,083 119 0,081 112 0,083 98 0,086 79 0,093
45,0 116 0,077 111 0,075 104 0,077 91 0,080 74 0,087

5040 109 0,072 105 0,071 98 0.073 BE 0,075 70 0,082

s€




Table 6. Transient temperature distribdutions as s function of time asz well as
radial position, a = 0,500 inch (material properties are evaluated at:

6009¢, 0gts3s 4009C, IStS9s
05530)° = »

300°¢c, 95ts17s 200°c, 175t<30; 100%¢,

“".o m-!‘~ s‘.-!e d.uZh dg-i
weee) 1) "o o T op T ef Y e} V%
0.000 1353 1.0000 1313 1.,0000 1205 1.0000 1028 1,0000 761 1.0000
0.001 1325 0.9792 1287 0.,9801 1180 00,9791 1001 0,973 738 0.9698
0.005 1326 0,9800 1288 0,9808 1181 0,9799 1002 0,9746 739 0.9710
0,010 1327 0.9808 1289 0,9816 1182 0.,9807 1003 0.9756 740 0.9721
0,020 1328 0,9816 1290 0,.982% 1183 0,981 1004 0,9767 781 00,9732
0.040 1330 0,9824 1291 0.,9831 1184 0,9823 1005 0.,9776 742 0.9744
0.060 1331 0.9832 1292 0,983 1185 0,9831 1006 0,9786 783 0.9755
0,080 1332 0.9839 1293 0.9847 1186 0,9840 1007 0.9796 748 0,9766
0.100 1333 0.9847 1294 0,985% 1187 0.9848 1008 0,9806 744 0,9776
0.150 1334 0.9854 1295 0.,9862 1188 0,9856 1009 0,9815 785 0,9786
0.200 1335 0.9861 1296 0.,9869 1189 0,9864 1010 0.982% 746 0,9795
0.250 1336 0,9868 1297 0.9877 1190 0.9873 1011 0,35233 746 0,.9804
0.300 1336 0.9875 1298 0.9884 1191 0,9881 1012 0,9881 747 0.9812
0.400 1337 0.9881 1299 0.9890 1191 0,9887 1012 0,9846 747 0.9816
0.600 1337 0.9876 1298 0,9886 1191 0.,9881 1011 0.,9835 746 0.9801
0.800 1333 0.9849 1295 0,9860 1187 0.9852 1007 0.979% 743 0.9752
1.000 1328 00,9779 1286 0.,9791 1178 0.,9775 997 0.9694% 734 0,9638
1.500 1280 0.9460 1243 0,9465 1134 0,9811 952 0.9262 698 0.,9167

9¢€



~xa=0_  zla=ld  zfa=32  3la=2  xla=i
sees) 0 @ on T on Yoo e T e
2,000 1226 0,9060 1189 0,9052 1080 0,8963 902 0.8770 659 0.,8653
2,500 1169 0.8680 1133 0.8623 1026 0.8513 853 0,8300 622 0,8174
3,000 1112 0.,8220 1077 0.8198 973 0.8077 808 0,7857 589 0.7730
5.000 1053 0.,7779 1015 0,7730 914 00,7588 761 0,7398 556 0,7305
7000 836 0.6175 806 0,6135 726 0.6022 605 0,588 43 0,5815
9.000 670 0.,4950 686 0,4917 582 0,4829 486 0.4729 356 0,8682
11,000 603 O.B456  5B1 0,4426  S24 0,48350 839 0,4272 323 0.4238
13.000 497 0.3672 879 0,3646 432 0.3588 363 0,3534% 267 0.351)
15.000 B8 0,3076 501 0.3054 362 0,3008 306 0.2973 226 0.2962
17.000 806 0.,2997 91 0,2975 353 0.293% 299 0,2912 222 0,2910
19,000 352 0.,2600 339 0.2580 307 0.2587 261 0,253 193 0.2581
21,000 310 0.2295 299 0.,2276 271 0.2289 231 0,2248 172 0,2256
23,000 278 0.,2058 268 0,2041 253 0.,2019 208 0,2028 155 0.2035
25,000 253 0,1873 245 0,1857 222 0,183 190 0.18489 182 0,1862
30,000 207 0.1532 197 0,1502 181 0,1503 166 0,1612 129 0,1695
35,000 216 0,157 205 0.1563 189 0,1568 175 0,1704 137 0,180%
50,000 198 0,1565 188 0,1533 173 0.14% 161 0,1570 127 0,1667
45,000 186 0.,1372 176 0.1341 162 0.1348 152 0,1475 119 0.1569
50,000 176 0.,1302 167 0.1272 158 0,1280 144 0,1402 115 0,1493




Table 7. Transient temperature distributions as a funotion of time as well as
radial position, a = 0,336 inch (material properties are evaluated at:
6009C, Ostgl; 400°C, 35ts9s 300°C, 95ts173 200°C, 17565303 100°¢,

305t550)

;zg = 0 r/a = 1/5 r[g = 2[5 za = zj r[g = Mﬁ ';[a =1
t T V7T, 4 /T, T /7, T /7T, T /1, T /7,
(seo) (o (°r) (°r) (°F) (°2) (°F)

0,000 784 1,000 772 1,000 739 1,000 6387 1.000 614 1,000 513 1,000
0001 757 0,965 786 0,966 718 0,966 661 0.962 587 0,967 4950 0.954
0,005 758 0,967 787 0.967 715 0.967 662 0,964 S88 0,958 491 0.956
0.010 759 0.968 748 0,969 716 0,969 663 0,965 589 0.960 491 0,957
0,020 760 0,969 789 0,970 717 0,970 664 0,967 590 0,962 492 0.9%9
06080 761 0,971 750 0.971 718 0,971 665 0.968 591 0,963 493 0,961
0,060 762 0,972 751 0.972 719 0,973 666 0,970 592 0.965 w94 0,962
0,080 763 0.973 752 0,974 720 0.974 667 0,971 593 0,966 495 0.964
0.100 768 0,974 753 0.975 721 0,975 663 0.973 594 0,968 W& 0.966
0,150 765 04976 758 0,976 722 0,977 669 0,978 595 0,969 496 0.967
0200 766 0,977 755 04978 723 0,978 670 0,975 596 0.971 W57 0.968
0250 767 04,978 756 0,979 7258 0,979 671 0,977 596 0.972 498 0,969
0.300 7868 0,979 757 0.980 725 0.980 672 0.973 597 0.973 493 0,971
0,400 769 0,980 758 0,981 725 0.981 673 0,979 598 0.97% 99 0,971
0.600 768 0,980 757 0.980 7248 0,980 671 0,977 596 0.972 497 0.969
0.800 768 0,975 753 0.975 720 0,975 667 0.971 592 0,965 494 0,962
1,000 755 0.962 783 0,963 711 0,382 657 0,957 532 0,945 485 0,945
1.500 710 0,906 699 0,905 667 0,902 614 0,893 542 0,883 4§50 0.377
2,000 656 0,837 685 0,836 618 0,831 565 0,822 497 0.810 513 0,805



Table 7. (Continued) ~
r/a = 0 x/a = 1/5 r/a = 2/5 x/a = /5 x/a = B/5 r/a = 1

¢ 4 ?/*:c T 'r/*ro *r/'r, T *:*/1;, : 5 r/ro T ’r/*r’
(see) (°7) (°») (°r) (°») (°F) (°F)
2,500 603 0,769 593 0,768 568 0,768 518 0,754 856 0,743 379 0.738
3.000 554 0,706 545 0,705 518 0,701 426 0,692 418 0,682 38 0.677
5000 451 0,575 482 0,573 420 0,569 388 0,565 345 0.563 289 0.563
7.000 323 0,412 317 0,411 301 0,308 279 0,406 249 0,506 209 0,407
9.000 252, 0,309 238 0,308 226 0,306 210 0.305 188 0,307 158 0,308
11,000 211 0,263 207 0.268 197 0,266 183 0.267 165 0,270 139 0,271
13,000 1786 0,222 170 0,221 162 0,219 151 0,220 137 04223 116 0,225
15.000 149 0,190 156 0,189 13 0.i88 130 0,139 118 0,192 100 0,194
17.000 151 0,193 148 0,192 181 0,191 132 0,192 121 0,196 102 0,199
19,000 138 0,176 135 0.175 128 0,174 121 0.175 110 0,180 93 0,182
21,000 128 0,163 125 0.162 119 0,161 112 0,163 103 0.167 87 0.169
23,000 121 0,154 113 0,153 112 0,152 106 0,158 97 0,158 82 0,160
25,000 115 0,146 112 0,185 107 0.145 101 0,147 92 0.151 78 0,153
30,000 105 0.13% 102 0,133 98 0,132 96 0,140 94 0,153 82 0,160
35.000 117 0.150 114 0,148 109 0,157 107 0,156 105 0,171 92 0.179
50,000 112 0,152 109 0,181 108 0,140 102 0,149 100 0,163 88 0,170
85,000 107 0,135 108 0.,13% 99 0,138 57 0.142 95 0,156 84 0,163
50,000 102 0,130 99 0,129 95 0,128 94 0.136 92 0.149 80 0.156




)

Table 8, liormalized surface heat transmission rate per unit
1 ea (antov&nloxxopurttec are evaluated at: s
0sts3 C. xm: 3009C, 95t$173 2007¢C,
17545301 1008¢, 0%
u(t)/q(O)
t ® )ﬁg vra Q
(”0) a=0,5 in 1.90336 in a=0,5 in .-00336 in
0.000 1.0000 1.0000 1.00000 1,00000
0,001 0.9698 0.954 0.96979 0.9537
0,005 0.9710 0,956 0.97095 0.955
0,010 0.9721 0957 0.972481 0.95729
0.020 0.97 0.9 0.9722 0.95902
0,040 0.97 0.961 0974737 0,960
0,060 049755 0.962 0497547 0.962
0,080 0,97 0,964 06976 0.96396
0,100 0.9776 0.966 04977 0.96557
0.150 0.9786 069 0,97858 0.96690
0.200 0.979 0.9 097950 0.963820
0.250 0,980 0,968 0,980 o.969~7
0,300 0.9812 04971 0.,93124 0.97168
0,400 0.,9816 04971 0.,9816% 0.97117
0,600 0.,9801 0.968 0,98016 0.96896
0.800 0.,9852 0,962 0,97 0.96179
1.000 0.96 0.955% 0.9645 003;33
1.500 0.,9167 0.877 0.,9187 0.
2,000 0,868 0,80 0.,888136 0,80581
2;500 00817 007 0.82 007”8
3.000 0.7730 0.677 0.77664 0.678
54000 0.73%05 0.563 0.73378 0.56234
7.000 05815 Oe 0.58%95 0.,40660
9,000 4] 2 04308 . 37 0307
13.000 0.3513 0.22 035213 0.22429
15,000 2962 0,19 0029666 0.1936%1
17.000 0.2910 0.189 0e29121 0,18
19.000 D.2541 0.182 0,25405 0.18288
21.000 0.2256 0,169 0.,22541 0.16853
23,000 042035 NDe160 0,20318 0.1591
25,000 0,13 0.1 0.18 0.1518%
10,000 0.1692 0.1 D1l 0.,15717
54000 0.130 0,179 041762 ‘g 0.,17564
«000 0.,1667 0.170 0.142 0.,16750
45,000 0.1569 0.16 o.xgzz‘; 0.15953
50,000 00,1393 D415 04145 0.15311
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n(t) = 1 = (0.251£7=0,219t"),05ts1
n(t) = 0.2369/(t=049305)%23%,15¢53
n(t) = 0,2805/(t=0,3250)°°3%85 3ct21000

t(sec)

Figure 2, The function of n(t)
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DISCUSSION OF RESULTS

Temperatures as a function of time as well as radial
position are tabulated in Table 4 and plotted in Figure 3,
in which material properties are evaluated at 400° ¢
throughout the fuel element, In Table 5 and Figure &,
material properties are evaluated at 600° ¢,

From “igures 3 and 4, 1t 18 seen that temperatures dee
crease smoothly. The temperature distribution curve at
r/a = 1/2 1lies close to that at r/a = 0 as was expected,

It ie seen from doth Tables 4 and S at r/a = 0, t = 0
second, that the temperatures are more than $00° ¢ and
those at v/a = 1, t = 50 geconds, are less than 100° ¢,
Therefore, material properties are next evaluated at 600° ¢,
0<tg 3 500°c 35¢<9 300°¢c, 9 <t g 17y 200°
17 < t < 305 100° ¢, 30 < t < 50, sccording to the results
in Tables & and S. Two cases are considered, l.,e., a = 0,500
inch and a = 0,336 inch, The computer results are tabulated
in Tables 6 and 7 snd plotted in Figures § and §, reapectively.
In both figures, r/a = 0 refers to the center of the fuel
element and r/a = 1 refers to the surface of the fuel elee
ment,

Temperatures in "igure 5, which are shown for selected
tizes, are functions of radial position and time, The
figure shows that the differences of temperatures obtained
at r/a = 0 and r/a = 1 are approximately 600° 7 from t = 0
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second to t = 3 geconds, 200° © from t = 3 seconds to

t = 17 seconds and less than 100° ¥ for t > 17 seconds.

The assumed temperatures for the material in the stipulated
time intervals is responsible for the relatively wrong
curve,

In Figure 6 intervals of radial dlgtance are glven as
one fifth of the radius of the fuel element, Values of Q
along the dtMce are re-evaluated and )\ 1s calculated
again according to a = 0,336 inch, With these newly evalue
ated properties of material, egquation 58 is programmed on the
computer again, The results of temperature dlstridbutions
in Flgure 6§ show that the differences of temperatures from
r/a = 0 and r/a = 1 are about 250° ¥ from t = 0 second to
t = 1,5 seconde, 100° 7 from ¢t = 1,5 seconds to t = 9 seconds,
50° P from t = 9 seconds to t = 19 seconds, and then temperw
atures at v/a = 0 and r/a = 1 become very close with dif.
ferences of about 20° 7,

From Flgures 5 and € it is evident that temperaturees
are very dependent upon the radiusg of the fuel element as
well as the time, and it is seen that temperatures of the
fuel element with a = 0,336 inch are much lower at any glven
time than those for a = 0,500 inch,

In Table 8, values of Q(t) are calculated by using
equation 59, assuming T, = Oy l.¢sy all temperatures are re-
lated to the coolant temperature, The total heat tranmmission
rates, Q(t), at the surface of the fuel element are normalized
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by dividingz by thelr initial wvalues, Q(0), in each case,
Figure 7 shows that the heat transmission rate in the ocase
of a = 0,336 inch decreases more rapidly than that for the
case of a = 0,500 inch, This result is obtained for »> 0
and K= 0, It is also seen that for both a = 0,500 inch
and a = 0,336 inch the curve of Q(t) is smoother for wu= 0
than when K > 0,
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SUMMARY AND CONCLUSIONS

In heat transfer problems of nuclear engineering,
Laplace transformation procedures have been used by varie
ous references (6). A method of Hankel transformations has
been applied to develop the heat conduction equation 4 in
this work with the advantage over the use of the Laplace
transform that 1t is simpler to uge, 7For example, it does
not require the use of the complicated contour integration
for the reactor heat transfer w!bh-n.

The integral, f h‘n(t) 'a ’ dty, by using the trapee
zoidal rule, i pro;;gnad on the IBNe360 digital computer
with gilven values of a and Aye The quantity, n(t), as dee
fined earlier, 1s not readily integrable in closed fom
The trapezolidal rule (11) has been employed to integrate the
function n(t) in the computer program, Caloulated values of
n(t) as shown in Table 3 decrease rapidly from the start
of sudden power redustion for 2 seconds, then decrease
steadily at a lower rate,

The mathematical method which has been used in deriving
equations for temperature distributions 1s an analytical
technique, which provides particular solutions to heat cone
duction problems in nuclear power reactors,

The derived equations are applicable for caleculations
of the transient temperature distridbution and surface heat
transmlssion rate distribution in long solid cylindrical
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fuel elements for nuclear power reactors, in which the rate
of heat generation varies with time in any presceribed manner,
However, because of the material concepts involved it is
impossidble to apply the derived equations to cases of other
geometries,

Equation 42 ias applicadble to problems in which boundary
conductance and coolant temperature changed initially and
heat generation rate varies in any prescrided manner from
the steadyestate value,

If the properties of the material remain constant and
axial conductance is ignored, equation 44 may be used for
problems in which heat generation rate changes with time
and ig also applicable in analyzing the mechanical stability
of long solid ecylindrical fuel elements of boiling water
reactors,

Considering the change of properties, equation 58 is
applicable for problems in which coolant temperature changes
with time from an initial steadyegtate value, In developing
equation 58, it has been tacitly assumed that the inlet
coolant temperature remains constant after the power reduction,

Nuclear superheaters, which are ususlly operating at
high temperatures, are of interest with respect to the current
demand for nuclear power, Considering the concepts involved,
the stability of fuel element for nuclear superheaters must
be examined before they are operated for extended periods
of time,
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Natural uranium has been chosen as the fuel elenent in
the example, However, the game procedures may de employed
for ceramic fuel elements without any change in the derived
equation for predicting transient temperature distridutions
and heat transmission rate distributions.
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RECOMMENDATIONS FOR FURTHER STUDY

The analysis has been conducted only for the inner ane
milar element, 1.2., in the superheating region of the aguble
annular fuel element, Consideration of both reglons of the
double annular fuel element, is one of the recommended sube
jeocts for further study to obtain more acourate and useful
predictions of temperature distributions in the fuel slement
in miclear superheaters, This would require usin: a some-
what different mathematical procedure than the one developed
in this work,

The material in which heat generation takees place was
assumed to be in the form of a long solid esylinder, Longle
tudinal heat conduction was neglected, In practical cases,
the longitudinal heat conduction 1s considerable and must be
included with radial heat conduction, The derived equations
in this work represent the t.npautua’s as functions of
radial positions and time, COonsideration of both the longi-
tudinal and the radial heat conduction at transient state
will result in the temperatures being gliven as functicn:s o
longitudinal 4istances, radial positions, and time,

Temperatures after the gtart of the sudden power reduce
tion or shutedown of the reactor were caloulated in this
work, in which the fuel element was supposed to de placed in
a uniform thermal neutron flux fleld, One of the most come

mon techniques of power reduction of the reactor is sudden
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insertion of control rods inte the core, By means of control
rod motion, the themmal neutren flux is perturbed, Nathee
matical analysis of the transient temperature distributions
after the reactor is perturbed is one of the subjects ree
commended for further study,

The assumed temperatures at which material properties
were evaluated in this work were different from the calculated
temperatures, A further study would make use of more realise
tic sssumptions.

To simplify the heat conduction equation, the themmal
conductivity, k, was assumed constant, In practiocal cases,
the themmal conductivity changes with temperatures, If one
considers the themmal conductivity as a function of temperaw
ture and develops the heat conduction equation, better pree
dictions of fuel temperature distributions in the nuclear
fuel element will be obtalned,
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NOMENCLATURE

A Constant, defined by equations 45a and 45b

Ags Ay Constants

L] Outer radius of the fuel element

B Constant

¢ Congtant

] Specific heat of the fuel element

D Thermal diffusion coefficient

f(r) Funetion ef r

f, Finite Fankel transform of order zero of the funotien f

G fean energy released per flssion

h U/k, boundary conductance

I‘. Ii Nodified Besmel functions of the first kind of zere
and first orders, respectively

i Index for the time increment, 1.6e.y 15 2, 35 eee

Jor Iy Bessel functions of first kind of order zero and one,
respectively

3, Finlte Hankel transform of order zero

Ky lodified Bessel function of the first kind of order
zero

|4 Thermal conductivity

M Defined by equations 46a and 46b

= Index for Ay Lleeey 1y 25 35 eeee

n(r) Eadial temperature distribution
:(r) Finlte Hankel transform of m(r)
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n(t) function by which the heat generation rate varies
with time

P Index for summation inorement

e) Heat trensmission rate per unit length (Btuw/hr*ft)

with time ¢

Heat transmission rate per unit length at initial

steadyegtate from the fuel element

¢’

Heat genermtion rate per unit volume, q = q,u( rin(t)
Initial steady-state heat generation rate per unit
volune in the fuel element

Defined by equation 47

Variadble radius

Temperature of the fuel element

Finite Hankel transform of T

Initial steady-state coolant temperature

a/ar

a®q/ar®

Time

Overall heat transfer coefficlent from the surface of
the fuel element to the coolant

XyVs2s Coordinates of the rectangular system

E L T - fﬂ

@ e qqg

a Thermal diffusivity, a = k/oc

b6 Finlte Alfference, at, = t, « &, .

. Temperature Aifference, defined by equation 48
" Inverse thermal neutron diffusion length

A Parameter, defined by equation Sa
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Density of the fuel material
Summation

Macroscopie fleslon cross section
Thermal neutron flux

The operator "del?

Laplacian operator

Total derivatives with respect to x and r, respsctive

1y
Partial derivatives with respect to x and r, regpece

tively
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